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Problem 2.2

Find the electric field (magnitude and direction) a distance z above the midpoint between equal
and opposite charges (±q), a distance d apart (same as Ex. 2.1, except that the charge at
x = +d/2 is −q).

Solution

Derivation

Start with Gauss’s law, one of the governing equations for the electric field.

∇ ·E =
ρ

ϵ0

Normally to determine a vector field one needs to know the curl in addition to the divergence, but
because of symmetry (to be explained later) the divergence is sufficient. The aim is to solve this
equation for E for the two charges shown below.

The point charges, +q and −q, are located at (−d/2, 0, 0) and (d/2, 0, 0), respectively, so their
charge densities can be expressed using Dirac delta functions.

∇ ·E =
1

ϵ0

[
qδ

(
x+

d

2

)
δ(y)δ(z)− qδ

(
x− d

2

)
δ(y)δ(z)

]
, −∞ < x, y, z < ∞

=
q

ϵ0
δ

(
x+

d

2

)
δ(y)δ(z)− q

ϵ0
δ

(
x− d

2

)
δ(y)δ(z)

Make the substitution E = F+G.

∇ · (F+G) =
q

ϵ0
δ

(
x+

d

2

)
δ(y)δ(z)− q

ϵ0
δ

(
x− d

2

)
δ(y)δ(z)

∇ · F+∇ ·G =
q

ϵ0
δ

(
x+

d

2

)
δ(y)δ(z)− q

ϵ0
δ

(
x− d

2

)
δ(y)δ(z)

If we set

∇ · F =
q

ϵ0
δ

(
x+

d

2

)
δ(y)δ(z), −∞ < x, y, z < ∞, (1)

then the previous equation becomes

∇ ·G = − q

ϵ0
δ

(
x− d

2

)
δ(y)δ(z), −∞ < x, y, z < ∞. (2)
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Substituting E = F+G is essentially invoking the principle of superposition: The electric field at
r in the two-charge system is the vector sum of the fields from each charge individually. The
reason it works is because the divergence is a linear operator. Away from

(
−d

2 , 0, 0
)
the right side

of equation (1) is zero.

∇ · F = 0, (x, y, z) ̸=
(
−d

2
, 0, 0

)
The electric field around the charge at

(
−d

2 , 0, 0
)
is spherically symmetric with respect to this

point: F = F (r )r̂rr , where r =
√

(x+ d/2)2 + (y − 0)2 + (z − 0)2 is the radial distance from(
−d

2 , 0, 0
)
. Expand the divergence operator in spherical coordinates.

1

r
2

d

dr
(r 2F ) = 0

Multiply both sides by r
2.

d

dr
(r 2F ) = 0

Integrate both sides with respect to r .
r
2F = C1

Divide both sides by r
2.

F (r ) =
C1

r
2

To determine C1, integrate both sides of equation (1) over the volume of a sphere centered at(
−d

2 , 0, 0
)
with radius ε.

�

(x+ d
2 )

2
+y2+z2≤ε2

∇ · F dτ =

�

(x+ d
2 )

2
+y2+z2≤ε2

q

ϵ0
δ

(
x+

d

2

)
δ(y)δ(z) dτ

=
q

ϵ0

�

(x+ d
2 )

2
+y2+z2≤ε2

δ

(
x+

d

2

)
δ(y)δ(z) dτ

︸ ︷︷ ︸
= 1

Apply the divergence theorem on the left and switch to spherical coordinates (r , ϕ, θ), where θ is
the angle from the polar axis.

�

(x+ d
2 )

2
+y2+z2=ε2

F · dS =
q

ϵ0

�

r
2=ε2

F · dS =
q

ϵ0

�

r=ε

[F (r )r̂rr ] · (r̂rr dS) =
q

ϵ0

� π

0

� 2π

0
F (ε)(ε2 sin θ dϕ dθ) =

q

ϵ0
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Evaluate the double integral and solve for C1.

ε2F (ε)

(� 2π

0
dϕ

)(� π

0
sin θ dθ

)
=

q

ϵ0

ε2
(
C1

ε2

)
(2π)(2) =

q

ϵ0

C1(4π) =
q

ϵ0

C1 =
q

4πϵ0

As a result,

F (r ) =
q

4πϵ0

1

r
2

⇒ F =
q

4πϵ0

1

r
2
r̂rr ,

or in terms of the original variables,

F (x, y, z) =
q

4πϵ0

1(
x+ d

2

)2
+ y2 + z2

⇒ F =
q

4πϵ0

1(
x+ d

2

)2
+ y2 + z2

〈
x+ d

2 , y, z
〉√(

x+ d
2

)2
+ y2 + z2

.

Using the same argument for the charge −q at
(
d
2 , 0, 0

)
,

G(x, y, z) =
−q

4πϵ0

1(
x− d

2

)2
+ y2 + z2

⇒ G =
−q

4πϵ0

1(
x− d

2

)2
+ y2 + z2

〈
x− d

2 , y, z
〉√(

x− d
2

)2
+ y2 + z2

.

Therefore, the electric field of the two-charge system is

E = F+G

=
q

4πϵ0

〈
x+ d

2 , y, z
〉[(

x+ d
2

)2
+ y2 + z2

]3/2 +
−q

4πϵ0

〈
x− d

2 , y, z
〉[(

x− d
2

)2
+ y2 + z2

]3/2

=
q

4πϵ0


〈
x+ d

2 , y, z
〉[(

x+ d
2

)2
+ y2 + z2

]3/2 −
〈
x− d

2 , y, z
〉[(

x− d
2

)2
+ y2 + z2

]3/2
 .

To obtain the electric field a distance z above the midpoint between the charges, set x = 0 and
y = 0.

E(0, 0, z) =
q

4πϵ0

 〈
d
2 , 0, z

〉(
d2

4 + z2
)3/2

−
〈
−d

2 , 0, z
〉(

d2

4 + z2
)3/2

 =
q

4πϵ0

⟨d, 0, 0⟩(
d2

4 + z2
)3/2

=
qd

4πϵ0

x̂(
d2

4 + z2
)3/2
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Note that generally the electric field at r = ⟨x, y, z⟩ due to a point charge at r′ = ⟨x′, y′, z′⟩ is

E =
1

4πϵ0

q

r
2
r̂rr ,

where rrr = r− r′. This formula applies for a continuous charge distribution in one, two, or three
dimensions as follows.

dE =
1

4πϵ0

dq

r
2
r̂rr ⇒ E(r) =



1

4πϵ0

�
λ(r′)

r
2

r̂rr dl′ for a line charge density

1

4πϵ0

�
σ(r′)

r
2

r̂rr da′ for a surface charge density

1

4πϵ0

�
ρ(r′)

r
2

r̂rr dτ ′ for a volume charge density

Just Using the Formula

The answer will be found again just by using the formula at the top. Start by drawing a
schematic of the two charges.

Use the principle of superposition to find the electric field a distance z above the origin. Note
that r is the position vector to where we want to know the electric field, r′i is the position vector
to charge qi, and rrr i = r− r′i is the position vector from charge qi to where we want to know the
electric field.

E =
1

4πϵ0

2∑
i=1

qi
r
2
i

r̂rr i

=
1

4πϵ0

2∑
i=1

qi
r
2
i

(
r− r′i
r i

)

=
1

4πϵ0

2∑
i=1

qi
r
3
i

(r− r′i)

=
1

4πϵ0

2∑
i=1

qi
r
3
i

(
⟨0, 0, z⟩ − r′i

)
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Expand the sum, plug in the vectors, and simplify the result.

E =
1

4πϵ0

[
q1
r
3
1

(
⟨0, 0, z⟩ − r′1

)
+

q2
r
3
2

(
⟨0, 0, z⟩ − r′2

)]

=
1

4πϵ0

 +q(√
d2

4 + z2
)3

(
⟨0, 0, z⟩ −

〈
−d

2
, 0, 0

〉)
+

−q(√
d2

4 + z2
)3

(
⟨0, 0, z⟩ −

〈
d

2
, 0, 0

〉)
=

1

4πϵ0

q(
d2

4 + z2
)3/2

(
⟨0, 0, z⟩ −

〈
−d

2
, 0, 0

〉
− ⟨0, 0, z⟩+

〈
d

2
, 0, 0

〉)

=
1

4πϵ0

q(
d2

4 + z2
)3/2

⟨d, 0, 0⟩

=
1

4πϵ0

qd(
d2

4 + z2
)3/2

⟨1, 0, 0⟩

=
1

4πϵ0

qd(
d2

4 + z2
)3/2

x̂

This is the final answer, but it is customary in physics to check limits.

Checking Limits

In the limit as d → 0 and z → 0, for example, the electric field becomes

lim
d→0

E = lim
d→0

1

4πϵ0

qd(
d2

4 + z2
)3/2

x̂ =
1

4πϵ0

q(0)(
(0)2

4 + z2
)3/2

x̂ = 0

lim
z→0

E = lim
z→0

1

4πϵ0

qd(
d2

4 + z2
)3/2

x̂ =
1

4πϵ0

qd(
d2

4 + (0)2
)3/2

x̂ =
1

4πϵ0

qd
d3

8

=
1

4πϵ0

2q(
d
2

)2 x̂.

www.stemjock.com



Griffiths Electrodynamics 5e: Problem 2.2 Page 6 of 6

To see what happens to the electric field as z becomes large, use the binomial theorem to get rid of
the fractional exponent. Doing so shows exactly how the electric field goes to zero as z increases.

E =
1

4πϵ0

qd(
d2

4 + z2
)3/2

x̂

=
1

4πϵ0

qd[
z2

(
d2

4z2
+ 1

)]3/2 x̂
=

1

4πϵ0

qd

z3
(
1 + d2

4z2

)3/2
x̂

=
1

4πϵ0

qd

z3

(
1 +

d2

4z2

)−3/2

x̂

=
1

4πϵ0

qd

z3

[ ∞∑
k=0

Γ
(
−3

2 + 1
)

Γ(k + 1)Γ
(
−3

2 − k + 1
) ( d2

4z2

)k
]
x̂

=
1

4πϵ0

qd

z3

[ ∞∑
k=0

Γ
(
−1

2

)
Γ(k + 1)Γ

(
−1

2 − k
) ( d

2z

)2k
]
x̂

=
1

4πϵ0

qd

z3

[
Γ
(
−1

2

)
Γ(1)Γ

(
−1

2

) ( d

2z

)0

+
Γ
(
−1

2

)
Γ(2)Γ

(
−3

2

) ( d

2z

)2

+
Γ
(
−1

2

)
Γ(3)Γ

(
−5

2

) ( d

2z

)4

+ · · ·

]
x̂

=
1

4πϵ0

qd

z3

[
1− 3

2

(
d2

4z2

)
+

15

8

(
d4

16z4

)
− · · ·

]
x̂

Far away (z ≫ 1) the higher-order terms in brackets are negligible compared to 1, so the electric
field around a dipole falls off as 1/z3.
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